184 lines
5.9 KiB
Rust
184 lines
5.9 KiB
Rust
use crate::util::maps::*;
|
|
use itertools::Itertools;
|
|
use std::collections::HashMap;
|
|
|
|
pub fn day16() {
|
|
let input: World<char> = World::from_string(&crate::input(16));
|
|
let maze: World<bool> = input.map(|&c| c == '.' || c == 'S' || c == 'E');
|
|
|
|
let start: Transform = input
|
|
.enumerate()
|
|
.find(|(_, _, &c)| c == 'S')
|
|
.map(|(x, y, _)| Transform::new(x, y, Direction::East, &maze))
|
|
.unwrap();
|
|
let end: (usize, usize) = input
|
|
.enumerate()
|
|
.find(|(_, _, &c)| c == 'E')
|
|
.map(|(x, y, _)| (x, y))
|
|
.unwrap();
|
|
|
|
let (cheapest_cost, paths) = cheapest_paths(start, end);
|
|
|
|
let tiles_crossed: usize = paths
|
|
.iter()
|
|
.flatten()
|
|
.sorted_by_key(|p| (p.x, p.y))
|
|
.dedup_by(|a, b| a.x == b.x && a.y == b.y)
|
|
.count();
|
|
|
|
println!("Found {} shortest paths.", paths.len());
|
|
println!("Cheapest Path to End: {}", cheapest_cost);
|
|
println!("Tiles Crossed: {}", tiles_crossed);
|
|
}
|
|
|
|
fn cheapest_paths(start: Transform, end: (usize, usize)) -> (u64, Vec<Vec<Transform>>) {
|
|
let paths: Vec<(Vec<Transform>, u64)> = all_paths(start, end)
|
|
.into_iter()
|
|
// path -> (path, cost)
|
|
.map(|path| {
|
|
let cost = path.windows(2).into_iter().fold(0, |acc, w| {
|
|
acc + if w[0].direction == w[1].direction {
|
|
1
|
|
} else {
|
|
1000
|
|
}
|
|
});
|
|
(path, cost)
|
|
})
|
|
// keep only the paths tied for cheapest
|
|
.min_set_by_key(|(_, cost)| *cost);
|
|
let cheapest_cost = paths[0].1;
|
|
// (path, cost) -> path
|
|
let paths = paths.into_iter().map(|(path, _)| path).collect();
|
|
(cheapest_cost, paths)
|
|
}
|
|
|
|
fn all_paths(start: Transform, end: (usize, usize)) -> Vec<Vec<Transform>> {
|
|
let costs = maze_costs(start);
|
|
|
|
fn collect_paths<'a, 'b>(
|
|
costs: &'b HashMap<Transform<'a>, u64>,
|
|
p: Transform<'a>,
|
|
) -> Vec<Vec<Transform<'a>>> {
|
|
let cost_p = costs[&p];
|
|
|
|
// cost 0 means this is the start
|
|
if cost_p == 0 {
|
|
return vec![vec![p]];
|
|
};
|
|
// otherwise we look at all ways that we might get to p
|
|
p.comes_from()
|
|
.into_iter()
|
|
// no cost stored means that x is a silly place to ever come from (a dead end)
|
|
.filter(|x| costs.contains_key(x))
|
|
// if cost_x < cost_p, x most be closer to the start than p is
|
|
// otherwise, we don't want to check x (that would be anti-progress)
|
|
.filter(|x| costs[x] < cost_p)
|
|
.flat_map(|x| {
|
|
// now we recur, getting all paths from start to x
|
|
let mut paths = collect_paths(costs, x);
|
|
// and add ourself to the paths, then send the paths up the chain
|
|
paths.iter_mut().for_each(|path| path.push(p));
|
|
paths
|
|
})
|
|
.collect()
|
|
}
|
|
|
|
// every facing direction at the end may have a different cost
|
|
let endpoints = costs.keys().filter(|t| t.x == end.0 && t.y == end.1);
|
|
endpoints
|
|
.into_iter()
|
|
.flat_map(|&endpoint| collect_paths(&costs, endpoint))
|
|
.collect()
|
|
}
|
|
|
|
fn maze_costs(start: Transform) -> HashMap<Transform, u64> {
|
|
fn calculate_costs<'a, 'b>(costs: &'b mut HashMap<Transform<'a>, u64>, p: Transform<'a>) {
|
|
// cost to any x adjacent to p is the cost to get to p + the cost to travel p -> x
|
|
// and if that's cheaper than any previous way we've found, repeat for each x as the new p
|
|
for (travel_cost, adjacent) in p.goes_to() {
|
|
let total_cost = costs[&p] + travel_cost;
|
|
let existing_cost = costs.get(&adjacent).copied().unwrap_or(u64::MAX);
|
|
if total_cost < existing_cost {
|
|
costs.insert(adjacent, total_cost);
|
|
calculate_costs(costs, adjacent);
|
|
}
|
|
}
|
|
}
|
|
|
|
let mut costs = HashMap::new();
|
|
costs.insert(start, 0);
|
|
calculate_costs(&mut costs, start);
|
|
costs
|
|
}
|
|
|
|
#[derive(Copy, Clone)]
|
|
struct Transform<'a> {
|
|
x: usize,
|
|
y: usize,
|
|
direction: Direction,
|
|
map: &'a World<bool>,
|
|
}
|
|
|
|
impl<'a> Transform<'a> {
|
|
fn new(x: usize, y: usize, direction: Direction, map: &'a World<bool>) -> Self {
|
|
Self {
|
|
x,
|
|
y,
|
|
direction,
|
|
map,
|
|
}
|
|
}
|
|
|
|
fn goes_to(self) -> Vec<(u64, Transform<'a>)> {
|
|
let mut ret: Vec<(u64, Transform)> = vec![
|
|
self.direction.clockwise(),
|
|
self.direction.counterclockwise(),
|
|
]
|
|
.into_iter()
|
|
.filter(|d| self.map.travel_get(self.x, self.y, *d) == Some(true))
|
|
.map(|d| (1000, Self::new(self.x, self.y, d, self.map)))
|
|
.collect();
|
|
if let Some((nx, ny, true)) = self.map.travel_and_get(self.x, self.y, self.direction) {
|
|
ret.push((1, Self::new(nx, ny, self.direction, self.map)));
|
|
}
|
|
ret
|
|
}
|
|
|
|
fn comes_from(self) -> Vec<Transform<'a>> {
|
|
let mut ret: Vec<Transform<'a>> = vec![
|
|
self.direction.clockwise(),
|
|
self.direction.counterclockwise(),
|
|
]
|
|
.into_iter()
|
|
.map(|d| Self::new(self.x, self.y, d, self.map))
|
|
.collect();
|
|
let backward = self
|
|
.map
|
|
.travel_and_get(self.x, self.y, self.direction.opposite());
|
|
if let Some((nx, ny, true)) = backward {
|
|
ret.push(Self::new(nx, ny, self.direction, self.map));
|
|
}
|
|
ret
|
|
}
|
|
}
|
|
|
|
impl<'a> PartialEq for Transform<'a> {
|
|
fn eq(&self, other: &Self) -> bool {
|
|
std::ptr::eq(self.map, other.map)
|
|
&& self.x == other.x
|
|
&& self.y == other.y
|
|
&& self.direction == other.direction
|
|
}
|
|
}
|
|
|
|
impl<'a> Eq for Transform<'a> {}
|
|
|
|
impl<'a> std::hash::Hash for Transform<'a> {
|
|
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
|
|
self.x.hash(state);
|
|
self.y.hash(state);
|
|
self.direction.hash(state);
|
|
}
|
|
}
|